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The flat plate boundary layer. Part 1. Numerical 
integration of the Orr-Sommerfeld equation 

By R. JORDINSON 
Department of Mathematics (Applied), University of Edinburgh 

(Received 6 August 1969 and in revised form 15 February 1970) 

Numerical space-amplified solutions of the Orr-Sommerfeld equation for the 
case of a boundary layer on a flat plate have been calculated for a wide range of 
values of frequency and Reynolds number. The mean flow is assumed to be 
parallel and given by the appropriate component of the Blasius solution. The 
results are presented in a form suitable for comparison with experiment and are 
also compared with calculations of earlier authors. 

Introduction 
The initial stage of the transition process in the Blasius boundary layer on 

a flat plate is a problem which has received much attention in both theory and 
experiment. In  this stage of the transition process interest is centred on the 
stability of small, two-dimensional periodic disturbances in the boundary layer. 
The theoretical model is usually taken to be the Orr-Sommerfeld differential 
equation, the solution to which reduces to an eigenvalue problem when the 
appropriate boundary conditions are applied. The analytical solutions have 
usually been calculated assuming that the disturbances are subject to amplifica- 
tion in time; in experiments, however, the disturbances are injected continuously 
and amplification in space is observed. Nevertheless, the agreement between 
theory and experiment is regarded as satisfactory especially when account is 
taken of Gaster’s (1962, 1965) formulae for relating space and time amplification. 

A need arose, however, to provide some more detailed solutions of the Orr- 
Sommerfeld equation for comparison with the results of new experiments on the 
Tollmien-Schlichting waves which were being carried out in the low-turbulence 
wind tunnel of the Department of Natural Philosophy, Edinburgh. It was con- 
sidered that these solutions should be calculated for amplification in space and 
that, in order to match the wide range of experimental parameters involved, the 
solutions should be calculated on an electronic computer. These solutions form 
the basis of the work described in this paper. They employ a method originally 
developed by Osborne who used it to calculate a time-amplified solution to the 
problem. The differential equation is replaced by a finite-difference approxima- 
tion and Osborne’s iteration is used to calculate the eigenvalues. 

51 



802 R. Jordinson 

The differential equation and form of the solutions 
The flat plate is assumed to lie in the plane z = 0 with the leading edge coinci- 

dent with the y axis. The equations of motion are made dimensionless using the 
dimensional constants U,, the free stream velocity, a,, the displacement thickness 
of the Blasius boundary layer and v, the kinematic viscosity. 

The non-dimensional mean flow in the boundary layer, U(z ) ,  is assumed to be 
parallel to the plate and given by the x component velocity of the Blasius 
solution. The two-dimensional perturbation is expressed in terms of the dimen- 
sionless stream function 

$(x, 2 ,  t )  = #(z)  ei(az-fit) = # ( z )  eig@+t), (1) 
where the parameters a, /3 and c represent, respectively, the wave-number, 
frequency and phase velocity of the perturbation. The amplitude of the perturba- 
tion is assumed to be small and the substitution of in the non-dimensional 
linearized vorticity equation for the perturbation leads to the Orr-Sommerfeld 
equation ( 2 )  
where D = d/dz and R = U,S,/v. The boundary conditions follow from the fact 
that the perturbation velocities vanish at  the wall and far out in the mainstream. 
The first condition leads immediately to 

For the outer boundary conditions we note that for large values of z, ( 2 )  takes 
the form 

The required solution of ( 2  a )  which fits the outer boundary condition is evidently 

q5 = A e-az+ Be-YZ, 

where A and B are arbitrary constants, and y2 = a2 + iR(a - p). For the values 
of a, p and R relevant to the problem it is evident that IyI B la\ so that 
le-azl 3 le-YzI for z > 0. Hence the relevant condition can be expressed in the 
form 

for large values of x .  In the analytical solutions this condition is applied at  the 
edge of the boundary layer, but in the present calculations, following Kurtz 
(1961) and Osborne (1967), (4) is applied at x = 6. 

It is well known that the solution of ( 2 )  with the boundary conditions (3) and (4) 
poses an eigenvalue problem. In  the space-amplified case considered here it is 
assumed that p and R are real and given, and the problem is that of finding a 
complex eigenvalue a with a corresponding eigenvector q5. In  the time-amplified 
calculations hitherto considered by most authors, the corresponding problem is 
that of finding a complex eigenvalue c (or p) for given, real values of R and a. 

The direct calculations of a and # do not give all the results required for 
comparison with experiment and more detailed results have been directly com- 
puted. Additional calculations of this kind were carried out, for example, by 
Schlichting (1935), Shen (1954 and private communication) and Osborne (1967). 
The present calculations include (i) the variation of cc with /3 for several values of 
R; (ii) the loci ai = constant in the /3, R plane, where the locus ai = 0 is, of course, 

(i/R) (D2 - a2)2 q5 + (aV - p) (D2 - a2) q5 - a$D2 U = 0, 

# = D # = O  at z = O .  (3) 

( 2  a)  ( i /R) (D2-  ,2)2 # + (a -p )  (D2 - a2) # = 0. 

$ e-az (4) 
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the neutral curve; and (iii) the total amplification of a disturbance propagating 
downstream at constant frequency. In  this case, following Shen (private 
communication), the curves are plotted in the form In (AIA,) us. R for different 
values of the dimensionless frequency parameter F = /3/R = /3LulUg where /3: is 
the angular frequency of the oscillation. The appropriate formula is 

where m is the Blasius constant 1.7208, A is the amplitude of the disturbance at 
a point R, and A,, R, represent the amplitude and Reynolds number respectively 
at a point on branch 1 of the neutral stability curve corresponding to the given 
value of F.  Since /3 = F R  the lines F = constant in the /3, R plane appear as 
straight lines through the origin (see figure 3). 

The numerical methods 
The method developed by Osborne (1967) is in two parts. In  the f i s t  part the 

differential equation is replaced by a set of difference equations which is referred 
to as the algebraic model. A transformation of Numerov (1924) type is applied to 
the function q5, the truncation errors in the expressions for D4q5 and D2q5 being 
thus reduced to O(h6) and O(h4) respectively, where h is the step length used in the 
numerical integration. The algebraic model can be expressed in matrix form and 
the second part of the numerical method uses an iterative technique to find the 
eigenvalues of the matrix. The iteration scheme is the same as that given in 
Osborne (1967) where it appears as a third-order process, but in the present 
calculations the iteration is second order. Osborne pointed out that the order of 
the iteration depends on the way in which the eigenvalue parameter appears 
in the governing equation. In his case the eigenvalue, c,  appeared linearly, but in 
the space-amplification case a appears non-linearly. There is further discussion 
of this point in Osborne (1964). 

A computer program was written in Atlas Autocode to perform the iteration, 
i.e. to find ar and as for given real values of R and /3. The starting values for the 
iteration were usually taken from the results given in Osborne’s paper. 

It is necessary to make a suitable choice of the step length h used in the calcula- 
tions and h is, in practice, fixed by choosing the number n of equal intervals into 
which the range 0 < z < 6 is subdivided, so that h = 6/n. Kurtz (1961) and 
Osborne (1967) used n = 40 and this choice of n was used in the first runs of the 
present calculations. The program was then adapted to work with arbitrary 
choice of n and runs were made taking n = 40 (20)  100 for a given R and p. 
Finally, it was decided to use n = 80 for the main calculation, this value repre- 
senting the best compromise between the competing demands of accuracy on 
one hand and of machine storage space on the other. With n = 80, a, appears to 
be accurate to the fifth decimal place and as to within 5 units in that place. 

Further programs were written to give the calculated functions (ii) and (iii) 
of the previous section. These programs were similar to those used by Osborne 
(1967). 
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Results of the calculations 
(i) a, and a, as functions of p at constant R 

These results are shown in figures 1 and 2, drawn for values of R ranging from 
400 to 3000. At each value of R the range of values of p was chosen to  include the 
whole region of amplification and also sections of the damping region near the 
neutral curve. For amplification a$ must be negative and it is evident from 
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FIGURE 1. Variation of ar with /3 at constant R. 

figure 2 that, according to the present calculations, the critical Reynolds number 
is slightly greater than 500. In  figure 1 the graphs of a, versus p are almost straight 
lines and the slope of these lines representing the reciprocal of the group velocity 
(see Gaster 1965) becomes slightly steeper as the Reynolds number increases. It 
wilI be noticed however that there is a departure from this near linearity at  
values of p which correspond to points in the damping region adjacent to 
branch I1 of the neutral curve. 
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(ii) Curves of constant amplification 

The curves of a$ = constant are shown in figure 3 and the important parameters of 
the neutral stability curve are given in table 1. The critical Reynolds number is 
520, the corresponding value of p being 0.12. The numerical step-by-step calcula- 
tions of Kaplan (1964) give a neutral stability curve which is almost identical 

0.02 0.04 0.06 0.08 0.10 0.12 0.14 

P 
FIGURE 2. Variation of ui with P at constant R. 

500 1000 1500 2000 2500 3000 
R 

FIGURE 3. Curves of constant ai. 

with the present results. It has been noted by Obremski et al. (1969) that 
the various recent stability calculations carried out by different modern 
numerical methods have given remarkably consistent results. This is clearly 
exemplified by a comparison of the neutral stability curve of Wazzan et al. 
(1968) for the Blasius profile with the curve for ai = 0 in figure 3. The two 
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curves appear to be identical, and have exactly the same critical Reynolds 
number, 520. 

The analytical solutions of Lin (1945) and Shen (1954), however, give amuch 
lower critical Reynolds number of about 425, and a neutral stability curve which 
lies entirely outside the curve ai = 0 in figure 3. The maximum value of P on 
the neutral stability curve is 245 x in the present work, and 345 x 10V 
according to Shen. 

(iii) Curves of total ampli$cation 

The curves showing the growth of a disturbance propagating downstream a t  
constant P, calculated from ( 5 ) ,  are given in figure 4 (a)  for F x 106 = 50 (25) 150. 
Curves of this kind were caloulated by Shen (private communication) using the 
time-amplification formula 

R 
3000 
2600 
2200 
1800 
1400 
1000 
800 
600 
53 1 
520 
53 1 
559 
604 
67 1 
764 
964 

1164 
1364 
1764 
2164 
2564 
2964 

@r 

0.2878 
0.2973 
0.3084 
0.3212 
0.3359 
0.3512 
0.3559 
0.3466 
0-3233 
0.3012 
0.2806 
0.2604 
0.2405 
0.2205 
0.2011 
0.1746 
0.1576 
0-1455 
0-1289 
0.1178 
0.1097 
0.1034 

TABLE 1. 

P %PP 
0.0894 2.4899 
0.0947 2.4726 
0*1010 2.4495 
0-1088 2-4178 
0.1185 2.3721 
0.1306 2-297 1 
0.1368 2-2419 
0.1380 2.1826 
0- 1293 2-1562 
0.1193 2.1691 
0.1093 2-1949 
0.0993 2.2348 
0.0893 2-2892 
0.0793 2-3598 
0.0697 2.4510 
0.0568 2.6202 
0.0489 2.7632 
0.0433 2.8990 
0.0360 3-1168 
0-0313 3-3002 
0-0280 3.4652 
0.0255 3.6121 

Parameters on the neutral curve. 

W a P  
0-7925 
0.7501 
0.6983 
0.6326 
0.5463 
0.4153 
0.3197 
0.1724 
0-0570 

- 0.0156 
- 0.0738 
-0.1268 
-0.1784 
- 0.2299 
- 0-2826 
- 0.3617 
-0.4184 
- 0.4636 
-0.5328 
- 0.5864 
- 0.6303 
- 0.6674 

Figure 4 ( b )  shows a comparison between three of Shen’s curves and the corre- 
sponding curves obtained in the present work. In  general Shen’s curves show 
greater amplification and it will be noticed that the positions of the turning 
values on each pair of curves in figure 4 ( b )  differ slightly. These turning values 
correspond to points on branch I and branch I1 of the neutral curve, so that this 
disagreement is consistent with the results of the comparison noted in the 
previous section where Shen’s zone of amplification is larger than that in the 
present calculations. 
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(iv) The eigenfunctions 

The iterative method used to  find the eigenvalues also gives the corresponding 
eigenfunction, and the program for the basic iteration was adapted to print out 
its real and imaginary parts as functions of z for given values of R and /3. Table 2 
shows the values of Re 4 and Im 4 obtained in the present work for R = 998 and 
/3 = 0.1122. In  the table the eigenfunction has been normalized to make 
maxRe4 = 1. 
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FIUVRE 4. Curves of total amplification. 

z 

0 
0.15 
0.3 
0.45 
0.6 
0.75 
0.9 
1.2 
1.5 
1.8 
2-1 
2.4 

Re$ 
0 

0.05296 
0.16979 
0.30310 
0.43501 
0.55890 
0-66994 
0.84269 
0.94942 
0-99600 
0.99221 
0.95270 

Im c 
0 

- 0.02852 
- 0.05130 
- 0.05076 
- 0.03921 
- 0.02728 
-0.01918 
-0.01104 
- 0.00549 
- 0.00144 
- 0.001 11 
- 0.00270 

2 

2.7 
3-0 
3.3 
3.6 
3.9 
4.2 
4.5 
4.8 
6- 1 
5.4 
5.7 
6.0 

Re 55 
0.89272 
0.82447 
0.75568 
0.69024 
0.62961 
0.57403 
0.52329 
0.47701 
0.43482 
0-39636 
0.36130 
0.32934 

1 m c  
0.00379 
0.00466 
0-00540 
0.00603 
0.00654 
0.00693 
0.00720 
0.00738 
0.00746 
0.0 0 7 4 7 
0.00743 
0.00733 

TABLE 2. Real and imaginary parts of the eigenfunction for R = 998, B = 0.1122. 

Both Kurtz (1961) and Osborne in their time-amplified calculations have com- 
puted the eigenfunction for the same values of R and p. Their results agree very 
well so it is appropriate to consider a comparison with only one of them, say Kurtz. 
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This can be seen in figure 5 in which the real and imaginary parts of 4 as obtainedin 
the present work are shown in full lines for three Reynolds numbers including the 
one above. The points taken from Kurtz are plotted in each figure and should be 
compared with the curves labelled 3. The agreement between the two sets of 
results for Re c$ is satisfactory but there are obvious differences between those 
for Im $. Over the range 0 < x < 2 the present results are more negative than the 
time-amplified ones by about 10 %, although over the remainder of the range both 

I I I I I I I 

I 

I I I I I I I I 
1 2 3 4 5 6  

z 

FIGURE 5. The eigenfunctions. Case 1, R = 336, p = 0.1297, a, = 0.3084, a, = 0.0079. 
Case 2, R = 598, /3 = 0.1201, a? = 0.3079, as = -0.0019. Case 3, R = 998, /3 = 0.1122, 
a, = 0.3086, ai = - 0-0057. x , points calculated for case 3 by Kurtz (1961). 

sets of values are nearly zero. In  fact Kurtz also gives distributions of c$ for the 
values of R and /3 corresponding to curves 1 and 2; for the sake of clarity points 
from these distributions are not shown here. A further comparison at these two 
lower Reynolds numbers showed results similar to those just described, so it is 
possible that the differences over Img5 may be due to the intrinsic difference 
between time and space amplification. 

In  figure 6 the values of Redg5ldz and Imd$/dz are plotted against z for the 
same conditions as in figure 5. The agreement between the present results 
(curve 3) and those of Kurtz is better for the differentiated than the undifferenti- 
ated function. It is worth noting thaC the distribution of the r.m.s. amplitude of 
the x component of the perturbation velocity, which is proportional to 
[(Re d#/dz)2 + (Im d + / d ~ ) ~ ] &  is given almost exactly by the plot of Re d$/dx 
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against z. As the Reynolds number increases the peak of this distribution moves 
closer to  the plate which is in accordance with the experimental observations 
made at  Edinburgh. 

(v) The distribution of Reynolds stress 
The component of Reynolds stress which is of chief interest is -pjZE which 
interacts with the mean velocity gradient d Uldz to increase or decrease the energy 
of the perturbation. Thus if - FUW and d Uldz are of the same sign over a dominant 
part of the flow the perturbation grows in amplitude. 
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z 

FIGURE 6. Derivatives of eigenfunctions. (Same conditions as figure 5.) 

From the amplitude distributions given in the previous section, the Reynolds 

(7) 

stress has been calculated using the formula 

puw -- = - ;JOT puwdt,  

where u and w are the instantaneous components of the perturbation velocity, 
parallel and perpendicular to the flat plate, and T is the period 27r/p of one 
oscillation. Taking u. = Reayklaz and w = -Reayk/ax, where @is  defined in (l) ,  
and substituting into the right-hand side of (7) then gives 

q5Jz) and q5&) are the real and imaginary parts of the eigenfunction q5, and the 
primes indicate differentiation with respect to z. Since e-2ajx is independent of x ,  

-- 
- puw = p e--2a<z r o C ~ ( # ~ # J b ; - # ~ ~ i ) - o C ~ ( # P # ~ + # , # J b ; ) l .  
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it is convenient to omit it in the calculations and to define a Reynolds stress 
function S in the form 

This function is shown in figure 7 for the three cases considered in the last section. 
The curves show how the form of the Reynolds stress distribution varies with 
decreasing damping. Each distribution shows a peak close to the critical layer. 
In the damped case (labelled 1)  the Reynolds stress then decreases rapidly and 
becomes quite strongly negative in the outer part of the boundary layer; in 

P 

S 

0 1 2 3 4 5 6  
z 

FIGURE 7. Distribution of Reynolds stress. (Same conditions as figure 5.) 

case 2, slightly unstable, the Reynolds stress is much less negative in the outer 
part of the boundary layer, and in case 3, the Reynolds stress is positive over the 
whole range of x .  The principal differences occur in the region between the 
critical layer and the outer edge of the boundary layer where for the unstable case 
energy is being transferred from the mean flow to the disturbance. This contrasts 
with the damped case where, in the outer part of the boundary layer the energy 
transfer is in the opposite direction. All three distributions show that the energy 
transfer is virtually restricted to the total thickness of the boundary layer. 
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